Featured image of post 机器学习 入门 线性回归(1)

机器学习 入门 线性回归(1)

线性回归笔记

[TOC]

3.1 线性回归

$$ f(x_i) = wx_i + b \quad \text{使得} \quad f(x_i) \simeq y_i $$

离散属性的处理:若有"序"(order),则连续化;否则,转化为 $k$ 维向量

令均方误差最小化,有:

$$ (w^*, b^*) = \arg\min_{(w, b)} \sum_{i=1}^m (f(x_i) - y_i)^2 = \arg\min_{(w, b)} \sum_{i=1}^m (y_i - wx_i - b)^2 $$$$ E(w, b) = \sum_{i=1}^m (y_i - wx_i - b)^2 $$

进行最小二乘参数估计

3.2 最小二乘解

$$ E_{(w,b)} = \sum_{i=1}^m (y_i - wx_i - b)^2 $$

分别对 $w$ 和 $b$ 求导:

$$ \frac{\partial E_{(w,b)}}{\partial w} = 2 \left( w \sum_{i=1}^m x_i^2 - \sum_{i=1}^m (y_i - b)x_i \right) $$$$ \frac{\partial E_{(w,b)}}{\partial b} = 2 \left( mb - \sum_{i=1}^m (y_i - wx_i) \right) $$

令导数为 0,得到闭式(closed-form)解:

$$ w = \frac{\sum_{i=1}^m y_i (x_i - \bar{x})}{\sum_{i=1}^m x_i^2 - \frac{1}{m} \left( \sum_{i=1}^m x_i \right)^2} \quad b = \frac{1}{m} \sum_{i=1}^m (y_i - wx_i) $$

3.3 多元线性回归

同样采用最小二乘法求解,有

$$ w^* = \arg\min_{w} (y - Xw)^T (y - Xw) $$$$ E_w = (y - Xw)^T (y - Xw) $$

,对 $w$ 求导:

$$ \frac{\partial E_w}{\partial w} = 2X^T (Xw - y) $$

令其为零可得 $w$

然而,麻烦来了:涉及矩阵求逆!

  • 若 $X^T X$ 满秩或正定,则 $$ w^* = (X^T X)^{-1} X^T y $$
  • 若 $X^T X$ 不满秩,则可解出多个 $w$

若可解出多个解,可以引入正则化得到唯一解

Licensed under CC BY-NC-SA 4.0
comments powered by Disqus
使用 Hugo 构建
主题 StackJimmy 设计